N ov 1 99 9 LYCEN 9121 June 1991 ON QUANTUM GROUPS AND THEIR POTENTIAL USE IN MATHEMATICAL CHEMISTRY ∗

نویسندگان

  • Maurice Kibler
  • Tidjani Négadi
چکیده

The quantum algebra su q (2) is introduced as a deformation of the ordinary Lie algebra su(2). This is achieved in a simple way by making use of q-bosons. In connection with the quantum algebra su q (2), we discuss the q-analogues of the harmonic oscillator and the angular momentum. We also introduce q-analogues of the hydrogen atom by means of a q-deformation of the Pauli equations and of the so-called Kustaanheimo-Stiefel transformation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : q - a lg / 9 71 10 27 v 1 2 8 N ov 1 99 7 Yang – Baxter systems , solutions and applications

Two types of Yang–Baxter systems play roles in the theoretical physics – constant and colour dependent. The constant systems are used mainly for construction of special Hopf algebra while the colour or spectral dependent for construction of quantum integrable models. Examples of both types together with their particular solutions are presented. The complete solution is known only for the consta...

متن کامل

06 7 v 1 1 9 D ec 1 99 1 ON THE SYMMETRIES OF INTEGRABILITY

We show that the Yang-Baxter equations for two dimensional models admit as a group of symmetry the infinite discrete group A (1) 2. The existence of this symmetry explains the presence of a spectral parameter in the solutions of the equations. We show that similarly, for three-dimensional vertex models and the associated tetrahedron equations, there also exists an infinite discrete group of sym...

متن کامل

6 v 1 1 N ov 1 99 4 Many q - Particles from One : a New Approach to ∗ - Hopf Algebras ?

We propose a nonstandard approach to solving the apparent incompatibility between the coalgebra structure of some inhomogeneous quantum groups and their natural complex conjugation. In this work we sketch the general idea and develop the method in detail on a toy-model; the latter is a q-deformation of the Hopf algebra of 1-dim translations + dilatations. We show how to get all Hilbert space re...

متن کامل

2 v 3 2 4 N ov 1 99 5 The Real Symplectic Groups in

1 Abstract We present a utilitarian review of the family of matrix groups Sp(2n, ℜ), in a form suited to various applications both in optics and quantum mechanics. We contrast these groups and their geometry with the much more familiar Eu-clidean and unitary geometries. Both the properties of finite group elements and of the Lie algebra are studied, and special attention is paid to the so-calle...

متن کامل

v 1 5 N ov 1 99 7 TWO - STRUCTURE FRAMEWORK FOR HAMILTONIAN DYNAMICAL SYSTEMS ∗

The Lie product and the order relation are viewed as defining structures for Hamiltonian dynamical systems. Their admissible combinations are singled out by the requirement that the group of the Lie automorphisms be contained in the group of the order automorphisms (Lie algebras with invariant cones). Taking advantage of the reciprocal independence of the relevant structures, the inclusion rela...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991